Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Data Acquisition & Exploration: Exploring 5 Key MLOps Questions using AWS SageMaker
Latest   Machine Learning

Data Acquisition & Exploration: Exploring 5 Key MLOps Questions using AWS SageMaker

Last Updated on June 28, 2023 by Editorial Team

Author(s): Anirudh Mehta

Originally published on Towards AI.

The ’31 Questions that Shape Fortune 500 ML Strategy’ highlighted key questions to assess the maturity of an ML system.

A robust ML platform offers managed solutions to easily address these aspects. In this blog, I will walk through AWS SageMaker's capabilities in addressing these questions.

What?

An MLOps workflow consists of a series of steps from data acquisition and feature engineering to training and deployment. As such, instead of covering all aspects in a single blog, we will focus on key questions surrounding Data Acquisition & Exploration (EDA).

[Automation] Does the existing platform helps the data scientist to quickly analyze, visualize the data and automatically detect common issues
▢ [Automation] Does the existing platform allows integrating and visualizing the relationship between datasets from multiple sources?
▢ [Collaboration] How can multiple data scientists collaborate in real-time on the same dataset?
▢ [Reproducibility] How do you track and manage different versions of acquired datasets
▢ [Governance & Compliance] How do you ensure that the data privacy or security considerations have been addressed during the acquisition

Use Case & Dataset

The questions can be best answered in a context of a use case. For this series, we will consider “Fraud Detection” as a use case with very simple rules:

  • Any transaction above 500 amount is considered fraud
  • Any transaction outside the user’s billing address is considered fraud
  • Any transaction outside the normal hours is considered fraud

The following script generates customer & transaction datasets with occasional fraudulent events.

# Script to generate the transactions dataset
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
import random

np.random.seed(123)

# Define count for the sample dataset
n_customers = 10
n_transactions = 100000

# Define dictionary for sample dataset
states = ['CA', 'NY', 'TX']
cities = ['Los Angeles', 'New York', 'Dallas']
streets = ["Main St", "Oak St", "Pine St", "Maple Ave", "Elm St", "Cedar St"]
zips = [10001, 10002, 90001, 90002, 33101, 33102, 75201, 75202, 60601, 60602]

# Generate customers
customer_df = pd.DataFrame({
'customer_id': range(n_customers),
'state': np.random.choice(states, n_customers),
'city': np.random.choice(cities, n_customers),
'street': np.random.choice(streets, n_customers),
'zip': np.random.choice(zips, n_customers)
})
customer_states = dict(zip(customer_df['customer_id'], customer_df["state"]))

# Generate transactions
transaction_df = pd.DataFrame({
'transaction_id': np.random.choice([random.randint(100000000, 999999999) for i in range(1000)], n_transactions),
'customer_id': np.random.choice(range(n_customers), n_transactions),
'amount': [random.uniform(0, 500) if random.random() < 0.9 else random.randint(500, 1000) for i in range(n_transactions)],
'transaction_time': np.random.choice([datetime(2023, 4, 25, 22, 15, 16) - timedelta(days=random.randint(0, 30), hours=random.randint(0, 12), minutes=random.randint(0, 60)) for i in range(n_transactions)], n_transactions)
})

# Set transaction state to customer state
transaction_df['transaction_state'] = [customer_states[x] if random.random() < 0.9 else np.random.choice(states) for x in transaction_df['customer_id']]

# Mark transaction as fraud if an outlier
transaction_df['fraud'] = transaction_df.apply(lambda x: random.random() < 0.1 or x['amount'] > 500 or x['transaction_time'].hour < 10 or x['transaction_time'].hour > 22 or x['transaction_state'] != customer_states[x['customer_id']], axis=1)

print(f"Not fraud: {str(transaction_df['fraud'].value_counts()[0])} \nFraud: {str(transaction_df['fraud'].value_counts()[1])}")

customer_df.to_csv("customers.csv", index=False)
transaction_df.to_csv("transactions.csv", index=False)

For real-world data, you can refer Kaggle Credit Card Fraud Dataset.

U+1F4A1 AWS offers a fully managed service for customized fraud detection — Amazon Fraud Detector.

How?

I have tried to structure the article to be easily readable. However, to truly understand SageMaker’s capabilities, I highly recommend taking a hands-on approach.

For this series, I will be using SageMaker Studio, a fully managed ML & MLOps IDE. AWS also offers SageMaker Studio Lab, a free Jupyter-based IDE environment.

U+1F4A1 AWS SageMaker is offered as part of the free tier for the first 2 months with various sub-limits. I will include the sub-limits where applicable.

Organize with SageMaker Domain

[U+2713] [Governance & Compliance] How do you ensure that the data privacy or security considerations have been addressed during the acquisition

In an enterprise, multiple models are often developed simultaneously. These models are based on different datasets and algorithms and are often managed by different teams. Effective organization and controlled access are critical for efficient management, as well as ensuring overall data privacy and security.

SageMaker provides the concept of domains to organize ML resources such as notebooks, experiments, and models, and to manage access to them.

Create a domain

Creating a domain in Amazon SageMaker is a quick and straightforward process. The console offers two workflows: Quick Setup (1 min) and Standard Setup (10 min). The latter allows for additional security configurations, such as authentication, encryption, and VPC configuration.

Source: Image by the author.

Manage access – User profiles

Amazon SageMaker allows the creation of different profiles based on either custom or predefined personas, such as data scientists, MLOps engineers, or compute.
These profiles enable an organization to effectively manage permissions & govern access across the platform:

  • Control access to resources such as the SageMaker canvas or a particular bucket.
  • Control user activities like creating ML jobs or publishing models.
Source: Image by the author.

Explore with SageMaker Data Wrangler

[U+2713] [Automation] Does the existing platform helps the data scientist to quickly analyze, visualize the data and automatically detect common issues?

In any data science exercise, the first step is to make sense of the data and identify correlations, patterns, and outliers. The success of a model depends on the quality of the dataset, making this a crucial step.

SageMaker Data Wrangler simplifies and accelerates this process.

U+26A0️ The Data Wrangler’s free tier provides only 25 hours of ml.m5.4xlarge instances per month for 2 months. Additionally, there are associated costs for reading and writing to S3.

Importing the data

Data Wrangler supports importing data from various sources, such as Amazon S3, Redshift, Snowflake, and more. For this article, I have already uploaded the customer and transaction datasets generated previously to Amazon S3. I have also granted SageMaker’s user profile access to this bucket.

Source: Image by the author.

Automated Analysis

Out of the box, Data Wrangler automatically identifies the data types of various columns within the uploaded data. Additionally, Data Wrangler offers built-in capabilities such as data quality and insights reports.

Let’s run it against our target column – “fraud”, and review the insights it automatically generates.

Source: Image by the author.
  1. Dataset Statistics: Statistical summaries of the dataset — feature count, count of valid and invalid records, and feature type distribution. It found 6 features and no duplicate or invalid records.
  2. Target Column Distribution: Understand any imbalances in the dataset.
  3. Feature Summary: Predictive power of individual features. As expected, the features — amount, time, and state play the most important role.
  4. Feature Distribution: Distribution of individual features w.r.t the target label.
  5. Quick Model: Predicts how good a trained model on this dataset might be.
  6. Confusion Matrix: Performance of the quick model to detect fraud or not.

[U+2713] [Automation] Does the existing platform allows integrating and visualizing the relationship between datasets from multiple sources?

SageMaker Wrangler enables data scientists to quickly join two datasets and visualize them together. In this particular case, we are joining customer data with transaction data. Once joined, data scientists can run the automated analysis of the combined data in a similar manner.

Source: Image by the author.

We will explore this further in the next blog on “Data Transformation and Feature Engineering”.

Collaborate with SageMaker Spaces

[U+2713] [Collaboration] How can multiple data scientists collaborate in real-time on the same dataset?

SageMaker Spaces enables users within a domain to collaborate and access the same resources, including notebooks, files, experiments, and models. It allows multiple users to access, edit and review the same notebooks in real time within a shared studio application.

Source: Image by the author.
Source: Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration (AWS Blog)

Track with SageMaker Lineage & DVC

[U+2713] [Reproducibility] How do you track and manage different versions of acquired datasets

Version control is a well-known concept in the coding and development world, but it is also essential for data science activities.

DVC (Data Version Control) is a popular open-source tool designed for the same purpose. It allows you to track and manage versions of your datasets, features, and models.

DVC integrates with Git and allows data scientists to store and track references to the data stored in various locations such as Amazon S3, HTTP, or on disk.

# Register S3 remote
dvc remote add -d myremote s3://<bucket>/<optional_key>

# Track file
# This creates ".dvc" file with information necessary for tracking
dvc add data/raw.csv
git add training.csv.dvc # Version control ".dvc" file like any other git file

# Push data file to S3
dvc push

# Pull data files from S3
dvc pull

# Switch between versions
dvc checkout

[U+2713] [Governance & Compliance] How do you ensure that the data privacy or security considerations have been addressed during the acquisition (cont..)

DVC enables you to track data set versions. However, we may need to track additional information for governance and understanding the usage:

  1. Where did the raw data originate from?
  2. Who owns or manages the raw data?
  3. What transformations and preprocessing are being applied to the raw data?
  4. What models use a data set?

SageMaker Lineage is capable of providing answers to several of these questions. We will explore this further in the next blog on “Data Transformation and Feature Engineering”.

Here’s a quick example of creating a raw data artifact entity capturing source, origin, and owner information.

# Create a artifact
aws sagemaker create-artifact
--artifact-name raw-data
--source SourceUri=s3://my_bucket/training.csv
--artifact-type raw-data
--properties owner=anirudh,topic=mlops,orgin=script # Additional details
--tags Key=cost_center,Value=research

{
"ArtifactArn": "arn:aws:sagemaker:us-east-1:removed:artifact/24c7ff167309de3b466aab30f95a8810"
}

# Describe a artifact
aws sagemaker decribe-artifact --artifact-arn arn:aws:sagemaker:us-east-1:removed:artifact/24c7ff167309de3b466aab30f95a8810

U+26A0️ Clean-up

If you have been following along with the hands-on exercises, make sure to clean up to avoid charges.

Source: Image by the author.

In summary, AWS SageMaker Wrangler greatly accelerates the complex tasks of data exploration for data scientists.

In the next article, I will explore how SageMaker can assist with Data Transformation and Feature Engineering.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->