Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Building an Interactive Chatbot For Pre-Existing Questions with LLM Integration to Chat with multiple CSV Files
Latest   Machine Learning

Building an Interactive Chatbot For Pre-Existing Questions with LLM Integration to Chat with multiple CSV Files

Author(s): Ganesh Bajaj

Originally published on Towards AI.

This member-only story is on us. Upgrade to access all of Medium.

Streamlit UI-Image Illustrated by Author

There are multiple types of Chatbots:

Rule Based ChatbotRAG Based ChatbotHybrid Chatbot

This article covers how to create a chatbot using streamlit that answers questions using a pre-existing question-answer dataset along with an LLM integration to a csv file. Basically, chatbot is hybrid type designed to handle both known and unknown questions. This article will give a good starting point with an understanding of how the chatbot would work with different types of output and error handling using streamlit.

Bot first trys to match the input to a saved question and, if no match is found, uses an LLM model to generate relevant responses.

We’ll walk through the steps to build this chatbot, highlighting key features such as similarity-based search, error handling, and LLM query support.

To make the chatbot quick and responsive, we store question-answer pairs in a json format so that they can be directly referenced when a user query is similar to any existing question.

The qna.json file contains a list of dictionaries, each with a question (query) and corresponding response data (response).

An example structure in qna.json might look like this:

[ { "query": "Enter your question here", "response":… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓