Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

This AI newsletter is all you need #47
Latest   Machine Learning

This AI newsletter is all you need #47

Last Updated on July 25, 2023 by Editorial Team

Author(s): Towards AI Editorial Team

Originally published on Towards AI.

What happened this week in AI by Louie

This week AI progress continued down dual paths with significant advancements in open-source models together with developments at companies like Anthropic, Google, and Meta with a rising focus on business-oriented models.

Anthropic’s official release of Claude’s context window extension from 9k to 100k tokens primarily targets its benefit to business applications. This extension allows the model to effectively digest, summarize, and explain complex documents. It enables tasks such as analyzing strategic risks and opportunities, assessing the impact of legislation, identifying patterns across legal documents, comprehending extensive developer documentation, and providing technical answers. Furthermore, it facilitates rapid prototyping and intelligent modification of codebases by leveraging the extended context window.

Google introduced PaLM 2, its latest large language model (LLM), which powers the updated Bard chat tool — a direct competitor to OpenAI’s ChatGPT. PaLM 2 serves as the foundation for various new AI features, including the recently announced “AI snapshots.” These snapshots utilize language models to generate comprehensive summaries, enhancing the search experience. Users have the option to participate in the Search Generative Experience experimental program to benefit from these advancements.

Meta also launched its ImageBind model, which combines text, audio, visual, movement, thermal, and depth data. While currently a research project, it showcases the potential for future AI models to utilize even more multisensory content.

Notably, Meta has predominantly embraced the open-source approach, whereas companies like OpenAI have expressed concerns over open-sourcing, citing potential harm to creators through work replication and potential dangers arising from malicious actors exploiting state-of-the-art AI models.

The HackAPrompt competition by Learn Prompting

HackAPrompt, organized by Learn Prompting and advised by Towards AI, is aimed at enhancing AI safety. In this competition, participants will try to hack as many prompts as possible by injecting, leaking, and defeating the sandwich defence. The competition is designed to be beginner-friendly, welcoming even non-technical people to participate.

The competition runs from May 5th, 6:00 pm to May 26th, 11:59 pm EST

Participate here to win prizes worth over $35,000!

Check the HackAPrompt submission tutorial here.

Hottest News

  1. Google launches PaLM 2, its next-gen large language model

Google has recently unveiled PaLM 2, its latest large language model (LLM). PaLM 2 will serve as the driving force behind Google’s revamped Bard chat tool and will act as the foundational model for numerous new AI features being introduced by the company. Developers can now access PaLM 2 through Google’s PaLM API, Firebase, and Colab.

2. Meta open-sources multisensory AI model that combines six types of data

Meta has introduced ImageBind, an innovative open-source AI model designed to integrate various data streams such as text, audio, visual data, temperature, and movement readings. However, the model is solely a research project and does not have any immediate consumer or practical applications.

3. Introducing 100K Context Windows: Claude, by Anthropic

Anthropic has extended Claude’s context window from 9K to 100K tokens, which roughly translates to around 75,000 words. This enhancement enables Claude to effectively process, summarize, and provide explanations for dense documents.

4. The AI takeover of Google Search starts now

Google’s latest endeavour involves the introduction of “AI snapshots,” which employ language models to generate comprehensive summaries, enhancing the search experience. Users have the option to participate in the experimental program known as the Search Generative Experience, allowing them to benefit from these advancements.

5. ‘Godfather of AI’ says AI threat is ‘more urgent’ to humanity than climate change

A renowned artificial intelligence pioneer, often referred to as the “Godfather of AI,” has raised concerns about the rapid advancement of AI, stating that it poses a “more urgent” risk to humanity compared to the impacts of climate change. Hinton specifically highlights potential threats such as job displacement and the spread of misinformation but does not support a stoppage of AI development.

Three 5-minute reads/videos to keep you learning

  1. Plan-and-Execute Agents

TLDR has introduced a new type of agent executor called Plan-and-Execute. This agent executor distinguishes higher-level planning from short-term execution, enabling efficient handling of complex long-term planning tasks. You can give it a try in Python or JS (JavaScript).

2. AI Will Create More Developers, Not Less

AI has the potential to expedite the growth of developers worldwide by reducing entry barriers through the provision of open-source and closed-source products tailored to diverse audiences. This article provides a rationale for how AI will contribute to the expansion of the developer community.

3. Learnings exploring the GPT/ LLM space

In this article, the author shares key takeaways from interaction with founders, VCs, and employees of tech companies experimenting with LLMs. Some significant learnings include LLMs’ significant business potential, the need for software engineering skills, GPT-4’s top performance with high costs, an anticipated decrease in training expenses, and more.

4. GPT-4’s Maze Navigation: A Deep Dive into ReAct Agent and LLM’s Thoughts

The article examines the application of GPT-4 in maze navigation. It investigates the utilization of memorization-based navigation, labeling, and A* search techniques. However, it notes the limitations of GPT-4 in terms of lacking robust planning skills.

5. Prompt Injection Explained

This article offers a comprehensive overview of prompt injection, highlighting its significance as an important issue. It delves into the reasons why many of the proposed solutions may not effectively address the problem.

Papers & Repositories

  1. InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning

The paper presents a systematic and comprehensive study on tuning vision-language instruction based on the pre-trained BLIP-2 models. The resulting InstructBLIP models exhibit state-of-the-art zero-shot performance across all 13 held-out datasets, surpassing both BLIP-2 and the larger Flamingo model by a significant margin.

2. PrivateGPT

Built with LangChain, GPT4All, and LlamaCpp, PrivateGPT enables users to securely interact with their documents, harnessing the capabilities of GPT while maintaining complete privacy. With no data leaks, PrivateGPT can ingest documents and answer questions without the need for an internet connection.

3. Augmented Large Language Models with Parametric Knowledge Guiding

The paper introduces a novel framework called Parametric Knowledge Guiding (PKG), which enhances Language and Learning Models (LLMs) by incorporating a knowledge-guiding module. This module allows LLMs to access pertinent knowledge during runtime without modifying the underlying model parameters.

4. Active Retrieval Augmented Generation

The paper introduces FLARE (Forward-Looking Active Retrieval augmented generation), a generic method for retrieval-augmented generation. FLARE generates articles or overviews by iteratively utilizing predictions of upcoming sentences to anticipate future content. These predictions are then employed as queries to retrieve relevant documents to regenerate the sentence if it contains low-confidence tokens.

5. Towards Building the Federated GPT: Federated Instruction Tuning

This study presents a new approach called Federated Instruction Tuning (FedIT), which utilizes federated learning (FL) as the learning framework for fine-tuning Language and Learning Models (LLMs) based on instructions. This repository provides a foundational framework for investigating federated fine-tuning of LLMs, incorporating diverse categories of heterogeneous instructions.

Enjoy these papers and news summaries? Get a daily recap in your inbox!

The Learn AI Together Community section!

Weekly AI Podcast

In this week’s episode of the “What’s AI” podcast, Louis Bouchard interviews Logan Kilpatrick, Developer Relations at OpenAI, to demystify terms such as tokens, prompt engineering, alignment, and multimodal models. They shed light on the intricate workings of large language models like GPT-4. Kilpatrick also shares numerous helpful tips for maximizing the usage of OpenAI’s products. The episode highlights many key insights, including the distinction between ChatGPT and GPT-4, AI vocabulary, OpenAI’s interview process, and more. Tune in to the podcast for a deeper understanding of OpenAI and the exciting landscape of AI-powered developer solutions. You can find the podcast on YouTube, Spotify, or Apple Podcasts.

Upcoming Community Events

The Learn AI Together Discord community hosts weekly AI seminars to help the community learn from industry experts, ask questions, and get a deeper insight into the latest research in AI. Join us for free, interactive video sessions hosted live on Discord weekly by attending our upcoming events.

  1. Learn how to HackAPrompt

In this seminar, Sander Schulhoff, the Creator of Learn Prompting, will teach you how to master the art of hacking a prompt in the HackAPrompt competition. If you’re unsure about how to approach the competition, Sander will guide you through its workings and show you how it all comes together!

Date & Time: 17th May 6:00 pm EST

2. HackAPrompt Livestream- Come and brainstorm (For $35000)

HackAPrompt is aimed at enhancing AI safety. In this competition, participants will try to hack as many prompts as possible by injecting, leaking, and defeating the sandwich defense. The competition is designed to be beginner-friendly, welcoming even non-technical people to participate.

Date & Time: 22nd May 5:15 pm EST

Add our Google calendar to see all our free AI events!

Meme of the week!

Meme shared by NEON#8052

Featured Community post from the Discord

noahweber#6180 has introduced CloudGPT, which is capable of creating a fully functional, tested, and deployed cloud infrastructure with a single command. This project aims to streamline the process of creating and deploying cloud infrastructure. By describing your problem using natural language, the system will automatically build, test, and deploy a cloud architecture based on your prompt. You can check it out on GitHub and support a fellow community member. Share your questions and feedback in the thread here!

AI poll of the week!

Join the discussion on Discord.

TAI Curated section

Article of the week

Genetic Algorithms and the Knapsack Problem: A Beginners’ Guide by Egor Howell

The article carries out a walkthrough on how to apply the genetic algorithm to a famous combinatorial optimization problem, the knapsack problem. The knapsack problem has many real-life applications such as inventory management, traffic control, and supply chain efficiency. Therefore, it is an important problem and concept that Data Scientists should be aware of.

Our must-read articles

Mastering These 5 Statistics Concepts Will Boost Your Success in Data Science Interviews by Youssef Hosni

Compare and Evaluate Object Detection Models From TorchVision by Abby Morgan

Uncovering the Illusion: A Closer Look at Simpson’s Paradox and Its Implications for Statistical Analysis by Abhishek

If you are interested in publishing with Towards AI, check our guidelines and sign up. We will publish your work to our network if it meets our editorial policies and standards.

Job offers

Senior Software Engineer @H1 (Remote)

Senior Software Engineer, Data @BenchSci (Remote)

Staff Data Engineer @Overjet (Remote)

Senior Software Engineer @ClosedLoop (Remote)

Software Engineer — Applied Team @Unlearn.AI (San Francisco, USA/ Hybrid)

Senior Software Engineer, Machine Learning @Rad AI (Remote)

Interested in sharing a job opportunity here? Contact sponsors@towardsai.net.

If you are preparing your next machine learning interview, don’t hesitate to check out our leading interview preparation website, confetti!

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->