Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

NLP News Cypher | 09.20.20
Latest   Machine Learning   Newsletter

NLP News Cypher | 09.20.20

Last Updated on July 24, 2023 by Editorial Team

Author(s): Ricky Costa

Originally published on Towards AI.

Ibrahim Jabbar-Beik

NATURAL LANGUAGE PROCESSING (NLP) WEEKLY NEWSLETTER

NLP News Cypher U+007C 09.20.20

EMNLP and Graphs U+1F635

U+261D Persian art is pretty. Welcome back for another week of the Cypher. Yesterday, we made another weekly update to the Big Bad NLP Database and the Super Duper NLP Repo. We added 10 datasets and 6 new notebooks. This update was a good one since we added PyTorch Geometric notebooks for graph neural networks in case you all are feeling a bit adventurous.U+1F648

BTW, if you enjoy this newsletter please share it or give it a U+1F44FU+1F44F!

Detour: I’ve been experimenting with onnx runtime inference on BERT question answering. The latency is significantly improved with ONNX which is currently running on β€œokish” cloud CPUs, the latency range is between 170–240ms. Here’s the demo:

ONNX Runtime Inference U+007C Quantum Stat

BERT Question Answering

onnx.quantumstat.com

FYI, several EMNLP accepted papers were circulating this week for the November conference. Before we go there, here’s a quick appetizer from the paper β€œMessage Passing for Hyper-Relational Knowledge Graphs” which compares the traditional knowledge triple vs. a hyper-relational graph.

hype

Use the Force LUKE (preprint not out yet U+1F625)

declassified

GNN Resources

Found this thread from Petar VeličkoviΔ‡ (DeepMind) highlighting top graph neural network resources, enjoy:

A thread written by @PetarV_93

As requested , here are a few non-exhaustive resources I'd recommend for getting started with Graph Neural Nets (GNNs)…

threader.app

NeurIPS Fun n’ Games:

/overview

Wordplay: When Language Meets Games @ NeurIPS 2020. Date and time: Full day workshop on Fri Dec 11 th or Sat the 12 th…

wordplay-workshop.github.io

This Week

Dialog Ranking Pretrained Transformers

TensorFlow Lite and NLP

Indonesian NLU Benchmark

CoDEx

RECOApy for Speech Preprocessing

Survey on the β€˜X-Formers’

Dataset of the Week: ASSET

Dialog Ranking Pretrained Transformers

Another one accepted at EMNLP from Microsoft Research: using transformers (GPT-2) to figure out whether a reply to a comment is more likely to get engagement or not. Pretty interesting huh! Their dialog ranking models were trained on 133M pairs of of human feedback data from Reddit.

So what does it really do? Here’s an example from their demo: For the statementβ€œI love NLP!”, if you were to respond with β€œHere’s a free textbook (URL) in case anyone needs it.” this is more likely to be up-voted than the response β€œMe too!”. (meaning the former will have a higher ranking score)

Additionally, their colab allows you to run several models at once to distinguish:

updown… which gets more upvotes?

width… which gets more direct replies?

depth… which gets longer follow-up thread?

Colab of the Week

Thank you to author Xiang Gao for forwarding, you can also find it on the Super Duper Repo U+270C…

Google Colaboratory

Edit description

colab.research.google.com

GitHub:

golsun/DialogRPT

How likely a dialog response is upvoted U+1F44D and/or gets replied U+1F4AC? This is what DialogRPT is learned to predict. It is…

github.com

Paper: https://arxiv.org/pdf/2009.06978.pdf

TensorFlow Lite and NLP

From their blog post this past week: there are now new features in TF Lite with regards to NLP models: They have new pre-trained NLP models, and better support for converting TensorFlow NLP Models to TensorFlow Lite format.

TensorFlow Lite Model Maker

The TensorFlow Lite Model Maker library simplifies the process of training a TensorFlow Lite model using custom…

www.tensorflow.org

FYI, their TF Lite Task library has 3 APIs for:

  • NLClassifier: classifies the input text to a set of known categories.
  • BertNLClassifier: classifies text optimized for BERT-family models.
  • BertQuestionAnswerer: answers questions based on the content of a given passage with BERT-family models.

Keep in mind these are models that run natively on the phone (aka do not need internet connection to the cloud server).

What's new in TensorFlow Lite for NLP

September 16, 2020 – Posted by Tian Lin, Yicheng Fan, Jaesung Chung and Chen Cen TensorFlow Lite has been widely…

blog.tensorflow.org

Indonesian NLU Benchmark

Check out the new Indonesian NLU benchmark. They include a BERT-based model, IndoBERT, and its ALBERT alternative, IndoBERT-lite. In addition, the benchmark also includes datasets for 12 downstream tasks regarding single-sentence classification, single-sentence sequence-tagging, sentence-pair classification, and sentence-pair sequence labeling.

And finally, a large corpus for language modeling containing 4 billion words (250M sentences)U+1F525U+1F525.

IndoNLU Benchmark

The IndoNLU benchmark is a collection of resources for training, evaluating, and analyzing natural language…

www.indobenchmark.com

Paper:

LINK

CoDEx

More from EMNLP U+1F60E:

β€œCoDEx offers three rich knowledge graph datasets that contain positive and hard negative triples, entity types, entity and relation descriptions, and Wikipedia page extracts for entities.”

In addition, they also provide pretrained models to be used on the LibKGE library for link prediction and triple classification tasks.

The total data dump has about 1,156,222 triples.

GitHub:

tsafavi/codex

CoDEx is a set of knowledge graph Completion Datasets Extracted from Wikidata and Wikipedia. As introduced and…

github.com

RECOApy for Speech Preprocessing

RECOApy is a new library that offers devs a UI that helps to record and phonetically transcribe data for speech apps in addition to grapheme-to-phoneme conversion. Currently, the library supports transcription in 8 languages: Czech, English, French, German, Italian, Polish, Romanian and Spanish.

GitHub:

adrianastan/recoapy

RECOApy streamlines the steps of data recording and pre-processing required in end-to-end speech-based applications…

github.com

Survey on the β€˜X-Formers’

The new model architecture dubbed by the Google authors as β€˜X-Formers’ (e.g. Longformer and Reformer) are the new and very memory efficient transformers that have come on the scene in 2020. In this paper, the authors describe a holistic view of this architecture, techniques, and current trends.

Paper: https://arxiv.org/pdf/2009.06732.pdf

Dataset of the Week: ASSET

What is it?

A dataset for tuning and evaluation of automatic sentence simplification models. ASSET consists of 23,590 human simplifications associated with the 2,359 original sentences from TurkCorpus.

Sample:

Where is it?

facebookresearch/asset

ASSET is a dataset for evaluating Sentence Simplification systems with multiple rewriting transformations, as described…

github.com

Every Sunday we do a weekly round-up of NLP news and code drops from researchers around the world.

If you enjoyed this article, help us out and share with friends!

For complete coverage, follow our Twitter: @Quantum_Stat

www.quantumstat.com

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓