Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Maximizing Pandas Performance: 6 Best Practices for Efficient Data Processing
Latest

Maximizing Pandas Performance: 6 Best Practices for Efficient Data Processing

Last Updated on February 15, 2023 by Editorial Team

Author(s): Fares Sayah

Originally published on Towards AI.

Optimizing Pandas: Understanding Data Types and Memory Usage for Efficient Data Processing

Photo by shiyang xu on Unsplash

Pandas is a popular library in the world of Data Science that makes it easy to work with data using efficient and high-performance tools. But when dealing with huge amounts of data, Pandas can become limited and cause memory problems. To overcome these issues, you can use other tools like Dask or Polar. This article will give you some tips to try before switching to another tool.

Pandas data types can be confusing, so it’s important to check them when you first begin exploring your data. Having the correct data types will make your analysis more accurate and efficient. Sometimes, Pandas might read an integer column as a floating point or object type, which can lead to errors and use up extra memory. This article will explain Pandas data types and show you how to save memory by using the right data types.

This article is inspired by Matt Harrison’s talk: Effective Pandas I Matt Harrison I PyData Salt Lake City Meetup.

We are going to use vehicle data in this article: vehicles data. The data is a little bit big, so we are going to choose a few columns to experiment with.

Table Of Content

· 1. Reading the Data
· 2. Memory Usage
· 3. Pandas Data Types
· 4. Integers
· 5. Float
· 6. Objects and Category
· 8. Datetimes
· 9. NumPy vs Pandas operations

1. Reading the Data

If the data does not fit into your memory in the first place, you can read data in chunks and explore it. The parameter essentially means the number of rows to read into memory.

After exploring a small portion of the data, you now know what the important columns and unimportant columns are. To save extra memory, you can only read important columns.

2. Memory Usage

The Pandas info() function provides valuable information about a DataFrame, including the data type of each column, the number of non-null values, and memory usage. This function is useful for understanding the structure of your data and optimizing memory usage. The memory usage report is displayed at the end of the info() function's output.

To get full memory usage, we provide memory_usage=”deep” argument to info().

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41144 entries, 0 to 41143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 city08 41144 non-null int64
1 comb08 41144 non-null int64
2 highway08 41144 non-null int64
3 cylinders 40938 non-null float64
4 displ 40940 non-null float64
5 drive 39955 non-null object
6 eng_dscr 24991 non-null object
7 fuelCost08 41144 non-null int64
8 make 41144 non-null object
9 model 41144 non-null object
10 trany 41133 non-null object
11 range 41144 non-null int64
12 createdOn 41144 non-null object
13 year 41144 non-null int64
dtypes: float64(2), int64(6), object(6)
memory usage: 18.7 MB

3. Pandas Data Types

When importing data into a Pandas DataFrame, the entire dataset is read into memory to determine the data types of each column. This process can sometimes result in incorrect data type assignments, such as assuming a column with integer values and missing data is a floating-point data type rather than an integer. To avoid this, it’s important to carefully review and adjust the data types as needed.

To check the types of your data, you can use .dtypes and it will return a pandas series of columns associated with there dtype :

city08          int64
comb08 int64
highway08 int64
cylinders float64
displ float64
drive object
eng_dscr object
fuelCost08 int64
make object
model object
trany object
range int64
createdOn object
year int64
dtype: object

Only three types appear in our dataset, but Pandas has 7 types in general:

  • object, int64, float64, category, and datetime64 are going to be covered in this article.
  • bool: True/False values. Can be a NumPy datetime64[ns].
  • timedelta[ns]: Differences between two datetimes.

4. Integers

Integer numbers. Can be a NumPy int_, int8, int16, int32, int64, uint8, uint16, uint32, or uint64.

You can use numpy.iinfo() to check the machine limit for the integer types and choose one that allows you to save memory without losing precision.

Machine parameters for int8
---------------------------------------------------------------
min = -128
max = 127
---------------------------------------------------------------
Machine parameters for int16
---------------------------------------------------------------
min = -32768
max = 32767
---------------------------------------------------------------

Use pandas.select_dtypes() to select columns based on specific dtype.

The simplest way to convert a pandas column of data to a different type is to use astype().

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41144 entries, 0 to 41143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 city08 41144 non-null int16
1 comb08 41144 non-null int16
2 highway08 41144 non-null int8
3 cylinders 40938 non-null float64
4 displ 40940 non-null float64
5 drive 39955 non-null object
6 eng_dscr 24991 non-null object
7 fuelCost08 41144 non-null int16
8 make 41144 non-null object
9 model 41144 non-null object
10 trany 41133 non-null object
11 range 41144 non-null int16
12 createdOn 41144 non-null object
13 year 41144 non-null int16
dtypes: float64(2), int16(5), int8(1), object(6)
memory usage: 17.3 MB

5. Float

Floating-point numbers. Can be a NumPy float_, float16, float32, float64

You can use numpy.finfo() to check the machine limit for the float types and choose one that allows you to save memory without losing precision.

Machine parameters for float16
---------------------------------------------------------------
precision = 3 resolution = 1.00040e-03
machep = -10 eps = 9.76562e-04
negep = -11 epsneg = 4.88281e-04
minexp = -14 tiny = 6.10352e-05
maxexp = 16 max = 6.55040e+04
nexp = 5 min = -max
---------------------------------------------------------------
Machine parameters for float32
---------------------------------------------------------------
precision = 6 resolution = 1.0000000e-06
machep = -23 eps = 1.1920929e-07
negep = -24 epsneg = 5.9604645e-08
minexp = -126 tiny = 1.1754944e-38
maxexp = 128 max = 3.4028235e+38
nexp = 8 min = -max
---------------------------------------------------------------

The cylinders column should be an integer dtype but because it has missing value, pandas read it as float dtype.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41144 entries, 0 to 41143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 city08 41144 non-null int16
1 comb08 41144 non-null int16
2 highway08 41144 non-null int8
3 cylinders 41144 non-null int8
4 displ 41144 non-null float16
5 drive 39955 non-null object
6 eng_dscr 24991 non-null object
7 fuelCost08 41144 non-null int16
8 make 41144 non-null object
9 model 41144 non-null object
10 trany 41133 non-null object
11 range 41144 non-null int16
12 createdOn 41144 non-null object
13 year 41144 non-null int16
dtypes: float16(1), int16(5), int8(2), object(6)
memory usage: 16.8 MB

6. Objects and Category

Object: Text or mixed numeric and non-numeric values. Can be a NumPy string_, unicode_, or mixed types.

Category: The category data type in pandas is a hybrid data type. It looks and behaves like a string in many instances but internally is represented by an array of integers. This allows the data to be sorted in a custom order and more efficiently store the data.

drive and trany have a small number of unique values, so we can convert them to category dtype

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41144 entries, 0 to 41143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 city08 41144 non-null int16
1 comb08 41144 non-null int16
2 highway08 41144 non-null int8
3 cylinders 41144 non-null int8
4 displ 41144 non-null float16
5 drive 41144 non-null category
6 eng_dscr 24991 non-null object
7 fuelCost08 41144 non-null int16
8 make 41144 non-null category
9 model 41144 non-null object
10 trany 41144 non-null category
11 range 41144 non-null int16
12 createdOn 41144 non-null object
13 year 41144 non-null int16
dtypes: category(3), float16(1), int16(5), int8(2), object(3)
memory usage: 8.8 MB

8. Datetimes

Date and time values. Having our dates as datetime64 object will allow us to access a lot of date and time information through the .dt API.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41144 entries, 0 to 41143
Data columns (total 14 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 city08 41144 non-null int16
1 comb08 41144 non-null int16
2 highway08 41144 non-null int8
3 cylinders 41144 non-null int8
4 displ 41144 non-null float16
5 drive 41144 non-null category
6 eng_dscr 24991 non-null object
7 fuelCost08 41144 non-null int16
8 make 41144 non-null category
9 model 41144 non-null object
10 trany 41144 non-null category
11 range 41144 non-null int16
12 createdOn 41144 non-null datetime64[ns]
13 year 41144 non-null int16
dtypes: category(3), datetime64[ns](1), float16(1), int16(5), int8(2), object(2)
memory usage: 5.8 MB

9. NumPy vs. Pandas operations

Sometimes, just converting data to NumPy arrays will speed up calculations like in the example (.values will convert the series to a NumPy array):

78.1 µs ± 1.29 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

36.9 µs ± 579 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Summary

  • Proper data type assignment is an important step in exploring a new dataset.
  • Pandas generally make accurate data type inferences, but it’s important to be familiar with the conversion options available to ensure the data is properly formatted.
  • Correctly assigning data types can result in significant memory savings, potentially reducing memory usage by over 30%.


Maximizing Pandas Performance: 6 Best Practices for Efficient Data Processing was originally published in Towards AI on Medium, where people are continuing the conversation by highlighting and responding to this story.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->