Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Evaluating Mode Collapse in GANs Using NDB Score
Latest   Machine Learning

Evaluating Mode Collapse in GANs Using NDB Score

Last Updated on July 25, 2023 by Editorial Team

Author(s): Shashank Kumar

Originally published on Towards AI.

Below are a few art pieces I generated from a GAN. They aren’t striking at all, but they’re diverse. However, this is not always the case.

GAN generated images

The next set of images is from another GAN I trained. Not only are they awful, but they’re also identical.

Gan generated images

GANs are notoriously hard to train. They seldom, if ever, converge and often suffer from mode collapse. As illustrated in the above images, mode collapse happens when GANs fail to pick up the different modes present in data distribution and generate similar pictures relentlessly.

It’s convenient to spot mode collapse by merely plotting images, but as dataset size increases, it might be handy to evaluate it quantitatively. We’ll do that using the NDB score.

This post assumes familiarity with the GAN training mechanism. Refer to this post if you don’t know how they function.

Mode Collapse

You see, mode collapse is ingrained in the GAN training strategy. Real-world data is multi-modal, and an ideal GAN must capture them all. For instance, each digit in the MNIST dataset is a separate mode, and you’d prefer a GAN that generates all the numbers. However, we generally never incentivize them to do so.

Suppose the generator constructs the digit ‘2’ well enough to fool the discriminator. It doesn’t need to hustle anymore. The discriminator, though, during its training iteration, will receive these generated twos labeled as fake and, over time, learn to catch the bluff. When this happens, the generator could easily switch to another digit, say ‘3’, and continue the mode collapse loop. Intuitively, you could consider this as apathy to work extra when less is sufficient.

Now, let’s learn to track this phenomenon qualitatively.

Setting up the GAN

The full notebook for this implementation can be found at these links:

GAN Art and NDB score

Explore and run machine learning code with Kaggle Notebooks U+007C Using data from multiple data sources

www.kaggle.com

https://github.com/shashank14k/Generative_Models/blob/main/GAN/notebooks/gan-art-and-ndb-score.ipynb

The data used for training can be found here (license). These are a few images from it.

We’ll start by making these imports.

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Reshape, Conv2D, BatchNormalization, Conv2DTranspose
from tensorflow.keras.layers import LeakyReLU, Dropout, ZeroPadding2D, Flatten, Activation
from tensorflow.keras.optimizers import Adam
from sklearn.cluster import KMeans

Next, we’ll load the images from the directory using the TensorFlow data loader, reduce their shapes to (64,64), and normalize them. Note the batch size here is half of the global batch because the other half would come from generator images.

BATCH = 64
IMG_SIZE = (64,64)
LATENT_DIM = 100
EPOCHS = 600
PATH = "../input/abstract-art-gallery/Abstract_gallery/Abstract_gallery"
#Importing data

batch_s = int(BATCH/2)
#Import as tf.Dataset
data = tf.keras.preprocessing.image_dataset_from_directory(PATH, label_mode = None, image_size = IMG_SIZE, batch_size = batch_s).map(lambda x: x /255.0)

Let us now build the generator and the discriminator. Note that the discriminator does include any pooling layers. According to this 2015 paper, stridden convolutions perform better than pooling layers.

generator=Sequential()
generator.add(Dense(4*4*512,input_shape=[LATENT_DIM]))
generator.add(Reshape([4,4,512]))
generator.add(Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(64, kernel_size=4, strides=2, padding="same"))
generator.add(LeakyReLU(alpha=0.2))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(3, kernel_size=4, strides=2, padding="same",
activation='sigmoid'))
discriminator=Sequential()
discriminator.add(Conv2D(32, kernel_size=4, strides=2, padding="same",input_shape=[64,64, 3]))
discriminator.add(Conv2D(64, kernel_size=4, strides=2, padding="same"))
discriminator.add(LeakyReLU(0.2))
discriminator.add(BatchNormalization())
discriminator.add(Conv2D(128, kernel_size=4, strides=2, padding="same"))
discriminator.add(LeakyReLU(0.2))
discriminator.add(BatchNormalization())
discriminator.add(Conv2D(256, kernel_size=4, strides=2, padding="same"))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Flatten())
discriminator.add(Dropout(0.5))
discriminator.add(Dense(1,activation='sigmoid'))

Define the training process

class GAN(tf.keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super(GAN, self).__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim

def compile(self, d_optimizer, g_optimizer, loss_fn):
super(GAN, self).compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
self.dloss = tf.keras.metrics.Mean(name="discriminator_loss")
self.gloss = tf.keras.metrics.Mean(name="generator_loss")

@property
def metrics(self):
return [self.dloss, self.gloss]

def train_step(self, real_images):
batch_size = tf.shape(real_images)[0]
noise = tf.random.normal(shape=(batch_size, self.latent_dim))
generated_images = self.generator(noise)
combined_images = tf.concat([generated_images, real_images], axis=0)
labels = tf.concat([tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0)
labels += 0.05 * tf.random.uniform(tf.shape(labels))
with tf.GradientTape() as tape:
predictions = self.discriminator(combined_images)
dloss = self.loss_fn(labels, predictions)
grads = tape.gradient(dloss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(zip(grads, self.discriminator.trainable_weights))

noise = tf.random.normal(shape=(2*batch_size, self.latent_dim))
labels = tf.zeros((2*batch_size, 1))
with tf.GradientTape() as tape:
predictions = self.discriminator(self.generator(noise))
gloss = self.loss_fn(labels, predictions)
grads = tape.gradient(gloss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(zip(grads, self.generator.trainable_weights))
self.dloss.update_state(dloss)
self.gloss.update_state(gloss)
return {"d_loss": self.dloss.result(), "g_loss": self.gloss.result()}

Now, let’s move to the evaluation. We’ll use k-means clustering, which might not make sense qualitatively since all our images are random paintings(single class). Nevertheless, I expect the k-means algorithm to identify subtle similarities among them and create appropriate clusters.

We have RGB images of shape (64,64). To reduce dimensions, we’ll average the arrays along the last axis to convert them to grayscale. Note that the actual formula for converting to grayscale is different. Refer to this link for more information. We can further shrink the dimensions using autoencoders/PCA, but I’ll refrain for now. Finally, for clustering, we’ll also flatten the images.

images = np.asarray(images)
images = np.mean(images,axis=3)
images = images.reshape((images.shape[0],-1))

To limit computation effort, I’ve only used the first 500 images to create clusters. The elbow score is not quite plateauing yet. It could be because of the subtle differences between images of the same class. Further reduction in image dimensionality might help create better clusters. For illustration, we’ll work with the kink at cluster 7.

elbow_scores=[]
for c in range(4,10):
kmeans = KMeans(c)
kmeans.fit(images[:500])
elbow_scores.append(kmeans.inertia_)

plt.plot(range(4,10),elbow_scores)
plt.xlabel('Number of Clusters')
plt.title('Elbow Score')
plt.show()
Image by author

Now, we’ll generate 500 images from the generator and see which clusters they fall into.

kmeans=KMeans(7)
train_classes=kmeans.fit_predict(images[:500])
arr = tf.random.normal(shape=(500,LATENT_DIM))
generated_portraits = generator(arr)
generated_portraits = np.array(generated_portraits).mean(axis=3).reshape((generated_portraits.shape[0],-1))
generated_classes = kmeans.predict(generated_portraits)

We have generated images from all but cluster 4. The GAN seems to have learned the distribution well and could improve with more training iterations/hyper-parameter tuning. Next, we expand this evaluation to create a more concrete statistical test (NDB score).

Image by author

NDB Score

The ideal GAN must closely mimic the real data distribution. This is quantified using the NDB score. Here’s how it's computed:

  1. Cluster the training data (t samples) into ’n’ bins (Like we have clustered the paintings into 7 bins)
  2. Generate (g samples) of images
  3. Predict the cluster(bin) of each generated image
  4. For each bin, do the following test:

a. Compute the proportions of training and generated samples in the bin

b.Divide their difference by the standard error SE, which is calculated as shown below.

Image by author

Here ‘p’ and ‘q’ are used to refer to training and generated data, and ‘P’ is the pooled sample proportion.

c. If the p-value corresponding to the z-score is less than a threshold, the bin is deemed statistically different

5. Divide the number of statistically different bins by the total number of bins. This yields a number b/w 0 and 1, quantifying the difference between the real and learned distributions.

6. If the above quantity is greater than a set threshold, the GAN is deemed to have encountered mode collapse.

def ndb_score(training_data_classes,generated_data_classes,num_classes,z_threshold):
ndb = []
NT = len(training_data_classes)
NG = len(generated_data_classes)
for i in range(num_classes):
nt = np.sum(training_data_classes==i)
pt = nt/len(training_data_classes) #training data proportion for bin
ng = np.sum(generated_data_classes==i)
pg = ng/len(generated_data_classes) #generated data proportion for bin
P = (nt+ng)/(NT+NG)
SE = (P*(1-P)*((1/NT)+(1/NG)))**0.5
if abs((pt-pg)/SE) > z_threshold:
ndb.append(i)
print(f"Statisticall different classes:{ndb}")
print(f"ndb score: {len(ndb)/num_classes}")

Our GAN has an NDB score of 0.25, and only two clusters-4,5- appear statistically different. So, we’ve successfully avoided the devious trench of mode collapse. This function can be made part of the GAN class and run at the end of each epoch as a validation scheme. You’ll find that code here.

Conclusion

Thanks for reading till the end. There are a lot of ideas around how to avoid mode collapse. Besides tuning hyper-parameters and trying different loss functions, one could adopt a different training strategy. This paper details a few mechanisms. I’ll try to cover them in some other post.

References:

  1. https://wandb.ai/authors/DCGAN-ndb-test/reports/Measuring-Mode-Collapse-in-GANs–VmlldzoxNzg5MDk#:~:text=The%20NDB%20score%20is%20one,in%20the%20score%20over%20time.
  2. https://arxiv.org/abs/1805.12462
  3. Dataset : https://www.kaggle.com/datasets/bryanb/abstract-art-gallery

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->