Convolutional Neural Networks in PyTorch: Image Classification
Last Updated on June 11, 2024 by Editorial Team
Author(s): Greg Postalian-Yrausquin
Originally published on Towards AI.
In this exercise I will use the PyTorch package to build a convolutional neural network with the intention of training a model to classify a given set of images.
Convolutional Neural Networks are different from feed forward networks in that they keep information of the relation between values and their neighborhood, a feature that is even more important in cases where the data is in the shape of matrix. For this reason, CNNβs are used widely to solve problems of machine vision and to deal with datasets in shape of fields.
For this example, I am loading datasets with different types of images; each image is represented by a tensor
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Subset
from torch.utils.data import DataLoader
from torch.nn.modules.flatten import Flatten
import time, copy
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
import torchvision as tv
import pandas as pd
X_0 = np.load('full_numpy_bitmap_basketball.npy')
y_0 = np.full(
shape=1000,
fill_value=0,
dtype=np.int32
)
X_0 = torch.unflatten(torch.tensor(np.float32(X_0)), 1, (28, 28))
X_0 = X_0[:, None, :, :]
X_1 = np.load('full_numpy_bitmap_ice cream.npy')
y_1 = np.full(
shape=1000,
fill_value=1,
dtype=np.int32
)
X_1 = torch.unflatten(torch.tensor(np.float32(X_1)), 1, (28, 28))
X_1 = X_1[:, None, :, :]
X_2 = np.load('full_numpy_bitmap_bird.npy')
y_2 = np.full(
shape=1000,
fill_value=2,
dtype=np.int32
)
X_2 = torch.unflatten(torch.tensor(np.float32(X_2)), 1, (28, 28))
X_2 = X_2[:, None, :, :]
X_3 = np.load('full_numpy_bitmap_fork.npy')
y_3 = np.full(
shape=1000,
fill_value=3,
dtype=np.int32
)
X_3 = torch.unflatten(torch.tensor(np.float32(X_3)), 1, (28, 28))
X_3 = X_3[:, None, :, :]
X_4 = np.load('full_numpy_bitmap_key.npy')
y_4 = np.full(
shape=1000,
fill_value=4,
dtype=np.int32
)
X_4 = torch.unflatten(torch.tensor(np.float32(X_4)), 1, (28, 28))
X_4 = X_4[:, None, :, :]
y_ = np.concatenate([y_0, y_1, y_2, y_3, y_4])
X_ = torch.concatenate([X_0,X_1,X_2,X_3,X_4])
X_.shape
This tensor X_ is holding all the images to use in training and testing. The dimensions are 5000 = # of images, 1 = monochromatic, 28×28 = size of each image.
The next block of code creates an image dataset object and splits training, test, and validation sets, with batches of 100:
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, X, y):
self.dataset = torch.tensor(np.float32(X)).permute(0, 1, 2, 3)
self.labels = y
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
image = self.dataset[idx]
label = self.labels[idx]
return image, label
dataset = ImageDataset(X_, y_)
dataset_train, dataset_test = torch.utils.data.random_split(dataset, [int(np.floor(len(dataset)*0.75)), int(np.ceil(len(dataset)*0.25))])
dataset_train, dataset_val = torch.utils.data.random_split(dataset_train, [int(np.floor(len(dataset_train)*0.75)), int(np.ceil(len(dataset_train)*0.25))])
batch_size = 100
dataloaders = {'train': DataLoader(dataset_train, batch_size=batch_size),
'val': DataLoader(dataset_val, batch_size=batch_size),
'test': DataLoader(dataset_test, shuffle=True, batch_size=batch_size)}
dataset_sizes = {'train': len(dataset_train),
'val': len(dataset_val),
'test': len(dataset_test)}
Letβs see a random image, as the model will see it for classification:
train_features, train_labels = next(iter(dataloaders["test"]))
img = train_features[0].permute(1, 2, 0).squeeze()
label = train_labels[0]
plt.imshow(img)
plt.show()
print(label)
Which belongs to group 3 (forks).
The next block defines the model. This includes several layers of convolutions and a couple of feed-forward layers. For activation functions, I selected ReLU. Note that since there is no last activation function, the output is not particularly bounded
from torch.nn.modules.flatten import Flatten
class CNNClassifier(nn.Module):
def __init__(self):
super(CNNClassifier, self).__init__()
self.dropout = nn.Dropout(0.05)
self.pipeline = nn.Sequential(
#in channels is 1, because it is grayscale
nn.Conv2d(in_channels = 1, out_channels = 10, kernel_size = 5, stride = 1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels = 10, out_channels = 10, kernel_size = 5, stride = 1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels = 10, out_channels = 10, kernel_size = 5, stride = 1, padding=1),
nn.ReLU(),
nn.Conv2d(in_channels = 10, out_channels = 5, kernel_size = 5, stride = 1, padding=1),
nn.ReLU(),
#dropout to introduce randomness and reduce overfitting
self.dropout,
#reduce and flat the tensor before applying the flat layers
nn.MaxPool2d(kernel_size = 2, stride = 2),
nn.Flatten(),
nn.Linear(500, 50),
nn.ReLU(),
self.dropout,
nn.Linear(50, 50),
nn.ReLU(),
self.dropout,
nn.Linear(50, 10),
nn.ReLU(),
self.dropout,
nn.Linear(10, 10),
nn.ReLU(),
self.dropout,
nn.Linear(10, 5),
)
def forward(self, x):
return self.pipeline(x)
model = CNNClassifier()
The next step is the core of the training process:
import copy
#put the model in training mode
model.train()
#parameters:
#how many times we will run the data
num_epochs=50
#rate to update the gradients in the NN
learning_rate = 0.0001
#to reduce overfitting
regularization = 0.0000001
#loss function
criterion = nn.CrossEntropyLoss()
#determine gradient values
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=regularization)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
#the best model will be saved here
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_epoch = 0
#we will NOT use the training dataset in this process
phases = ['train', 'val']
training_curves = {}
epoch_loss = 1
epoch_acc = 0
for phase in phases:
training_curves[phase+'_loss'] = []
training_curves[phase+'_acc'] = []
for epoch in range(num_epochs):
print(f'\nEpoch {epoch+1}/{num_epochs}')
print('-' * 10)
for phase in phases:
if phase == 'train':
#set to train mode for training, eval for the rest
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs
labels = labels
# zero the parameter gradients
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, predictions = torch.max(outputs, 1)
loss = criterion(outputs, labels.type(torch.LongTensor))
# backward + update weights only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(predictions == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
training_curves[phase+'_loss'].append(epoch_loss)
training_curves[phase+'_acc'].append(epoch_acc)
print(f'Epoch {epoch+1}, {phase:5} Loss: {epoch_loss:.7f} Acc: {epoch_acc:.7f} ')
# deep copy the model if it's the best accuracy (based on validation)
if phase == 'val' and epoch_acc >= best_acc:
best_epoch = epoch
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print(f'Best val Acc: {best_acc:5f} at epoch {best_epoch}')
# load best model weights
model.load_state_dict(best_model_wts)
The next are a couple of canned functions to display the results
#to plot the training curves to check for overfitting
def plot_training_curves(training_curves,
phases=['train', 'val', 'test'],
metrics=['loss','acc']):
epochs = list(range(len(training_curves['train_loss'])))
for metric in metrics:
plt.figure()
plt.title(f'Training curves - {metric}')
for phase in phases:
key = phase+'_'+metric
if key in training_curves:
if metric == 'acc':
plt.plot(epochs, [item.detach().cpu() for item in training_curves[key]])
else:
plt.plot(epochs, training_curves[key])
plt.xlabel('epoch')
plt.legend(labels=phases)
#inference on new data
def classify_predictions(model, dataloader):
model.eval() # Set model to evaluate mode
all_labels = torch.tensor([])
all_scores = torch.tensor([])
all_preds = torch.tensor([])
for inputs, labels in dataloader:
inputs = inputs
labels = labels
outputs = torch.softmax(model(inputs),dim=1)
_, preds = torch.max(outputs, 1)
scores = outputs[:,1]
all_labels = torch.cat((all_labels, labels), 0)
all_scores = torch.cat((all_scores, scores), 0)
all_preds = torch.cat((all_preds, preds), 0)
return all_preds.detach().cpu(), all_labels.detach().cpu(), all_scores.detach().cpu()
#confussion matrix
def plot_cm(model, dataloaders, phase='test'):
class_labels = ["ball", "icecream", "bird", "fork", "key"]
preds, labels, scores = classify_predictions(model, dataloaders[phase])
cm = metrics.confusion_matrix(labels, preds)
disp = metrics.ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_labels)
ax = disp.plot().ax_
ax.set_title('Confusion Matrix -- counts')
Run for training curves
plot_training_curves(training_curves, phases=['train', 'val', 'test'])
These are great results, basically no overfitting.
Next, I run the confusion matrix over Test (unseen) data:
res = plot_cm(model, dataloaders, phase='test')
The results are satisfactory, with still some room for improvement in some categories.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.
Published via Towards AI