Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Classification Metrics Clearly Explained!
Latest   Machine Learning

Classification Metrics Clearly Explained!

Last Updated on July 25, 2023 by Editorial Team

Author(s): Jose D. Hernandez-Betancur

Originally published on Towards AI.

Let’s dive into the classification metrics

1. Introduction

One of the first things that people who are new to data science learn is how to measure how well algorithms work. When I first started learning about data science, I thought that the people who made the courses thought that introducing the metrics and their equations was more than enough to choose a good measure and train a high-performance model. This way of teaching couldn’t be further from the truth U+1F3DC️. Each measure has a practical explanation that should be looked into, especially when you consider what could happen if you don’t choose the right classification metric. These metrics are part of the basic tools that any data scientist should have, and not just for a job interview.

Drawings and colors were one thing that helped me understand some things during my BS. So, I’ll try to explain classification metrics in this way, especially to people who are new to the area of data science. So, join me if you are new to the field or want to find a new way to explain these metrics. Let’s push the limits of what we know and how we know it U+1F91CU+1F9F1U+1F680…

2. What Do Metrics Mean?

2.1. TP, TN, FP, FN, and Consufion Matrix

Before explaining the metrics, let’s go over some terms that are mandatory to understand. A classification problem is like the hypothesis tests widely used in inferential statistics (in fact, in machine learning, we assume a shape for the real data's statistical distribution, i.e., we use a surrogate model). Thus, we can draw a parallel with hypothesis testing.

Generative models vs Discriminative models for Deep Learning.

Get expert insights into generative and discriminative models, and find out which of the two is best suited for deep…

www.turing.com

You are a data scientist working for a hospital. The hospital requires you to build a classifier to predict whether patient is healthy or sick. Thus, the trivial or null hypothesis is that patience is healthy, while the research or alternative hypothesis is that patience is sick. Labels in favor of H₀ (or the null hypothesis) are called negative, no matter if they actually are, while labels in favor of Hₐ (or the alternative hypothesis) are named positive, regardless of whether they are true.

Thus, after training the classifier, you get a figure such as the one presented in Figure 1. The person shapes serve as a representation of the actual target value for labeled data, whereas the tags are the classifier's predictions after obtaining the decision boundary through training.

Figure 1. Labeling of sample data with the classification model (Image by Author Based on Images Created by Flaticon).
  • True Positive (TP): TP is the case when positive labels predicted by the classifier agree with reality. In Figure 1, TP is when a positive tag accompanies a sick man. Here, TP equals 9.
Figure 2. True positive (Image by Author Based on Images Created by Flaticon).
  • True Negative (TN): TN is the case when negative labels predicted by the classifier agree with reality. In Figure 1, TN is when a negative tag accompanies a healthy man. Here, TN equals 20.
Figure 3. True negative (Image by Author Based on Images Created by Flaticon).
  • False Positive (FP): FP is the case when positive labels predicted by the classifier disagree with reality. In Figure 1, FP is when a positive tag accompanies a healthy man. Here, FP equals 2.
Figure 4. False positive (Image by Author Based on Images Created by Flaticon).
  • False Negative (FN): FN is the case when negative labels predicted by the classifier disagree with reality. In Figure 1, FN is when a negative tag accompanies a sick man. Here, FN equals 2.
Figure 5. False negative (Image by Author Based on Images Created by Flaticon).
  • Confusion Matrix: The confusion matrix, also called the confusion table, is a way to describe the results of the classification or to bring together TP, TN, FP, and FN. Most of the time, the true (or observed) value is in the columns, and the predicted value is in the rows.
Figure 6. Confusion matrix (Image by Author Based on Images Created by Flaticon).

Although the above terms are explained with binary problems, they are extendable to multi-class (mutually exclusive classes) and multi-label (no mutually exclusive classes) classification problems.

2.2. Classification Metrics

Now, let’s explain the classification metrics, considering the above example.

  • Accuracy: Accuracy is the most intuitive classification metric. Thus, I won’t extend a lot of the discussion in this part. The accuracy is the ratio between the correctly predicted labels and the total or existing labels.
  • Recall: The recall metric is also known as the sensitivity or true positive ratio (TPR). In simple words, this is the ability of a classifier to correctly classify the actual total positive labels as positive.
Figure 7. Recall analysis (Image by Author Based on Images Created by Flaticon).

As Figure 7 shows, recall is a metric that focuses on all existing positives. If the classifier is like triage in a hospital, a high-recall model will send almost all of the people who are really sick to the doctor for more study.

  • Specificity: The specificity is also known as the true negative ratio (TNR). In simple words, this is the ability of a classifier to correctly classify the actual negative labels as negative.
Figure 8. Specificity analysis (Image by Author Based on Images Created by Flaticon).

As Figure 8 shows, specificity is a metric that focuses on all the negatives that already exist. If the classifier is set up as clinical triage, a high-specificity model will send almost all of the healthy people back to their homes.

  • Precision: This metric is the ratio between the true positives (TP) and the total samples predicted as positive by the classifier.
Figure 9. Precision analysis (Image by Author Based on Images Created by Flaticon).

Even though precision, like recall, focuses on positives, it does so by paying attention to positive labels that were predicted. If a model is high-precision, it will make sure that most of the people sent from triage to the doctor for further testing are truly sick (see Figure 9).

  • F1 Score: As we’ll see later, there’s a trade-off between recall and precision. So, the F1 Score is used to keep this balance in check. The harmonic mean of recall and precision is used to figure out F1. The F1 Score could also be seen as a balance between FP and FN.

Though the examples are for binary classification, the foundation holds true for multi-class and multi-label problems. Explore micro, macro, and weighted averages.

3. What Metric Should I Select?

Based on the goal of each metric, you can build a “decision tree” that shows the steps you need to take to choose the right metric for your classification problem. Figure 10 depicts a decision tree for classification metrics. Use this as a guide or starting point, and don’t forget to dig deeper into the rules that are important for your machine learning system.

Figure 10. Decision tree for classification metrics (Image by Author).

In the above tree, the first split node considers whether the dataset is imbalanced. An imbalanced dataset is one where the samples for each class are considerably different. To explore this topic and alternatives for solving this problem, check the materials below U+1F447…

5 Techniques to Handle Imbalanced Data For a Classification Problem

Techniques to handle imbalanced data for a classification problem. Here we discuss what is imbalanced data, and how to…

www.analyticsvidhya.com

imbalanced-learn documentation – Version 0.10.1

The user guide provides in-depth information on the key concepts of imbalanced-learn with useful background information…

imbalanced-learn.org

  • Accuracy: As the decision tree shows, accuracy is adequate when the dataset is balanced or you apply any strategy to balance the classes.
  • Specificity: As shown in Figure 10, when you are more worried about properly identifying whether something belongs to the negative class, specificity is the metric to choose. The example presented in Figure 8 is not adequate to illustrate the benefits of using specificity U+1F644. But I promised a good explanation U+1F60E.
Figure 11. When to select specificity (Image by Author Based on Images Created by Flaticon).

So, let’s say you have a model that needs to figure out if someone is innocent or guilty. If the person is innocent, he will be set free. If he is guilty, he will be hanged (see Figure 11). Thus, in this case, it is better to use a model with as much specificity as possible because a mistaken model can send an innocent to the gallows (and he never came back U+1F614).

  • F1 Score: This metric is normally used in cases of imbalanced learning. As mentioned in the decision tree in Figure 10, this metric is not only adequate when predicting the positive class properly, which is important, but also when it is important to find a balance between recall and precision, or as the same, between the FN and FP (see the equations for recall and precision).
  • Recall: This metric is good enough when the goal is to correctly classify the positive group and lower the chance of FNs. One good example is Figure 7. No decrease in FNs can lead to sick people being sent home without treatment, like chemotherapy for cancer.
  • Precision: This metric is good when you want to predict the positive class and reduce the chance of FPs. Figure 12 shows a situation in which you are looking into possible items to make and put on the market. If your classifier suggests the product will be profitable, you will spend money on its manufacture, advertising, and distribution. So, the risk of FPs will go down or go away if the precision is close to one.
Figure 12. When to select precision (Image by Author Based on Images Created by Flaticon).

Think about the worst-case and best-case scenarios. Both are important, or one is more important than the other?

4. What About the Classification Threshold?

In classification, we use a threshold to define whether a prediction lies on the side of the positives or negatives. The selection of this threshold has implications for the classification metrics.

Figure 13. Scenario 1 — Neutral or 0.5 threshold value (Image by Author).

Figure 13 shows an example of applying a sigmoid function to an output to obtain values between 0 and 1. In Figure 13, the threshold equals 0.5, which is the value normally used. Figure 13 shows the confusion matrix for this case and the values of accuracy, recall, specificity, and precision.

Figure 14. Scenario 2 — Higher threshold value (Image by Author).

If the threshold number is raised, the FNs go up and the FPs go down. This means that recall goes down and precision goes up. This is shown in Figure 14, where the threshold gets closer and closer to 1. This shows the FN-FP trade-off, also called the Recall-Precision trade-off. If, on the other hand, the threshold gets closer to zero or goes down, FNs go down while FPs go up (see Figure 15). This means that recall goes up while precision goes down. So, when making a classifier, you should choose the right threshold by thinking about what each metric means and how well the model performs based on the rules your machine-learning system should follow. For the above, using the receiver operating characteristic curve, or ROC curve, can help you in this endeavor (see below U+1F447).

Classification: ROC Curve and AUC U+007C Machine Learning U+007C Google for Developers

Estimated Time: 8 minutes An ROC curve ( receiver operating characteristic curve) is a graph showing the performance of…

developers.google.com

Figure 15. Scenario 3 — Lower threshold value (Image by Author).

Conclusions

In this post, we looked at important terms for classification learning, such as false positive (FP), false negative (FN), true positive (TP), true negative (TN), and confusion matrix. We look at the meaning of the most popular classification metrics, such as accuracy, recall, specificity, precision, and F1 Score, by showing them in pictures. We looked at situations where each metric was better and more hopeful than the others. We also looked at what it means to use different thresholds in the classification models and how they play a big role in the trade-off between recall and precision.

If you enjoy my posts, follow me on Medium to stay tuned for more thought-provoking content, clap this publication U+1F44F, and share this material with your colleagues U+1F680

Get an email whenever Jose D. Hernandez-Betancur publishes.

Get an email whenever Jose D. Hernandez-Betancur publishes. Connect with Jose if you enjoy the content he creates! U+1F680…

medium.com

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->