The Anatomy of a Full Large Language Model Langchain Application
Last Updated on May 22, 2023 by Editorial Team
Author(s): Mostafa Ibrahim
Originally published on Towards AI.
A deep dive — data extraction, initializing the model, splitting the data, embeddings, vector databases, modeling, and inference
Photo by Simone Hutsch on Unsplash
We are seeing a lot of use cases for langchain apps and large language models these days. After inspecting a lot of them and building a few myself, I wanted to write this article about the common concepts, ideas, and essentially the steps of building an LLM-langchain-powered application. Most of my experience is tailored toward semantic search and question-answering, so there might be slight differences for other NLP tasks (I doubt they will be major differences though).
I won’t be covering web scraping or acquiring the dataset in the first place since this is quite a… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.
Published via Towards AI
Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!
Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

Discover Your Dream AI Career at Towards AI Jobs
Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!
Note: Content contains the views of the contributing authors and not Towards AI.