
Unveiling Machine Learning: The PiML Toolbox for Enhanced Explainability
Last Updated on July 17, 2023 by Editorial Team
Author(s): Himanshu Sharma
Originally published on Towards AI.
Demystifying Complex Models with Transparency and Interpretability
PiML(Source: By Author)
Python modules like sklearn, lazy predict, etc., have made it simple to develop a machine-learning model. These libraries may be quickly learned and put to use in order to develop models, visualize those models, and evaluate how well they work.
The fundamental problem nowadays is that models are not readily understood, making it hard for a layperson to grasp the model’s reasoning and inner workings.
The rising complexity of machine learning models has made it harder to interpret their results and justify their choices. To guarantee openness, credibility, and legal conformity, however, explainability is essential. The PiML Toolbox is an… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.
Published via Towards AI
Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!
Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

Discover Your Dream AI Career at Towards AI Jobs
Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!
Note: Content contains the views of the contributing authors and not Towards AI.