Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Month in 4 Papers (June 2023)
Latest   Machine Learning

Month in 4 Papers (June 2023)

Last Updated on July 9, 2024 by Editorial Team

Author(s): Ala Falaki, PhD

Originally published on Towards AI.

Advancing Language Models through Efficient Training and Alignment Techniques.

This series of posts is designed to bring you the newest findings and developments in the NLP field. I’ll delve into four significant research papers each month, offering a comprehensive summary. Be sure to visit my blog regularly or subscribe to my newsletter for monthly updates. Let’s dive in!

📝 Better & Faster Large Language Models via Multi-token Prediction [paper]

This paper proposes an approach where multiple tokens are predicted using multiple heads, shifting from the conventional method of predicting only the next token. The method uses a shared model (called trunk) containing 13 billion parameters. During training, tokens are processed individually, with their losses computed and aggregated before the backward pass and weight updates are done. This ensures that memory usage will not grow.

During the inference phase, the model can generate output tokens sequentially as previously done or leverage the proposed method to accelerate the inference process by a factor of three.

This method proved most effective on coding benchmarks like HumanEval and MBPP. Their thorough analysis indicates that the effectiveness of this method becomes more apparent as the scale increases. Moreover, experimenting with various numbers of heads revealed that predicting four tokens in… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓