Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

How To Build Your Own K-Means Algorithm Implementation in Python From Scratch With K-Means++ Initialization
Latest   Machine Learning

How To Build Your Own K-Means Algorithm Implementation in Python From Scratch With K-Means++ Initialization

Last Updated on July 17, 2023 by Editorial Team

Author(s): Alex Belengeanu

Originally published on Towards AI.

What’s a better method to deepen your knowledge about algorithm principles than implementing it from 0 by yourself?

Photo by Mel Poole on Unsplash

What is K-Means?

K-Means is an unsupervised machine learning technique used to split up a number of ‘n’ observations into ‘k’ different clusters, where each observation belongs to the cluster with the closest centroid. The result will be a partition of the dataset into Voronoi Cells.

Suppose we have a dataset that consists of two features.

Figure 1. Randomly generated 2-dimensional unlabeled dataset. Illustration by the author.

As you can notice in Figure 1, it’s easily distinguishable by the eye that this dataset can be partitioned into six different clusters (or groups). But how does the algorithm determine which observation belongs to which cluster?

In order to assign each sample a specific group, the K-Means algorithm follows the following steps :

  1. Initialize ‘k’ centroids, one for each cluster.
  2. Assign each sample a cluster based on the closest centroid.
  3. Recompute cluster centers based on the assigned points.
  4. Repeat steps 2 and 3 until the centroids do not change anymore.

Voilà, that’s how K-Means reaches the final result.

K-Means use cases

Some of the most common use cases for this clustering algorithm include topics such as search engines, anomaly detection, and segmentation of customers based of previous behavior (interests, purchases etc.)

Initialization method for centroids

One important thing we should take into consideration is that the final results will depend on the initialization method of the cluster centers. Two of the most used initialization methods are ‘random’ and ‘k-means++’. The main difference between those two is that ‘k-means++’ is trying to push the centroids as far from one another as possible, which means that it will converge faster to the final solution.

For this implementation, we will be using ‘k-means++’ as the initialization method.

Implementation

class myKMeans:
def __init__(self, n_clusters, iters):
"""
KMeans Class constructor.

Args:
n_clusters (int) : Number of clusters used for partitioning.
iters (int) : Number of iterations until the algorithm stops.

"""

self.n_clusters = n_clusters
self.iters = iters

def kmeans_plus_plus(self, X, n_clusters):
pass

def find_closest_centroids(self, X, centroids):
pass

def compute_centroids(self, X, idx, K):
pass

def fit_predict(self, X):
pass

This is the structure of the class that we will build. The ‘kmeans_plus_plus()’, ‘find_closest_centroids()’ and ‘compute_centroids()’ methods will implement the 1st, 2nd and 3rd steps of the algorithm respectively. The ‘fit_predict()’ method will take the dataset and make a prediction on the labels.

def kmeans_plus_plus(self, X, n_clusters):
"""
My implementation of the KMeans++ initialization method for computing the centroids.

Args:
X (ndarray): Dataset samples
n_clusters (int): Number of clusters

Returns:
centroids (ndarray): Initial position of centroids
"""

# Assign the first centroid to a random sample from the dataset.
idx = random.randrange(len(X))
centroids = [X[idx]]

# For each cluster
for _ in range(1, n_clusters):

# Get the squared distance between that centroid and each sample in the dataset
squared_distances = np.array([min([np.inner(centroid - sample,centroid - sample) for centroid in centroids]) for sample in X])

# Convert the distances into probabilities that a specific sample could be the center of a new centroid
proba = squared_distances / squared_distances.sum()

for point, probability in enumerate(proba):
# The farthest point from the previous computed centroids will be assigned as the new centroid as it has the highest probability.
if probability == proba.max():
centroid = point
break

centroids.append(X[centroid])

return np.array(centroids)

The function above implements the first step (the initialization method) of the K-Means algorithm.

We take a random sample from the dataset and assign it as the first centroid. After that, we repeatedly compute the distance between each sample and all centroids and assign all the remaining centroids to the farthest points from the previously computed centers.

def find_closest_centroids(self, X, centroids):
"""
Computes the distance to the centroids and assigns the new label to each sample in the dataset.

Args:
X (ndarray): Dataset samples
centroids (ndarray): Number of clusters

Returns:
idx (ndarray): Closest centroids for each observation

"""


# Set K as number of centroids
K = centroids.shape[0]

# Initialize the labels array to 0
label = np.zeros(X.shape[0], dtype=int)

# For each sample in the dataset
for sample in range(len(X)):
distance = []
# Take every centroid
for centroid in range(len(centroids)):
# Compute Euclidean norm between a specific sample and a centroid
norm = np.linalg.norm(X[sample] - centroids[centroid])
distance.append(norm)

# Assign the closest centroid as it's label
label[sample] = distance.index(min(distance))

return label

The function above implements the second step (finding the closest centroids) of the K-Means algorithm.

For each sample in the dataset, we take each centroid and compute the Euclidean norm between them. We store that in a list, and at the end, we assign the observation to the closest centroid.

def compute_centroids(self, X, idx, K):
"""
Returns the new centroids by computing the mean of the data points assigned to each centroid.

Args:
X (ndarray): Dataset samples
idx (ndarray): Closest centroids for each observation
K (int): Number of clusters

Returns:
centroids (ndarray): New centroids computed
"""


# Number of samples and features
m, n = X.shape

# Initialize centroids to 0
centroids = np.zeros((K, n))

# For each centroid
for k in range(K):
# Take all samples assigned to that specific centroid
points = X[idx == k]
# Compute their mean
centroids[k] = np.mean(points, axis=0)

return centroids

The function above implements the third step (recomputing the new cluster centers) of the K-Means algorithm.

For each centroid, we take all the assigned points to that specific group and calculate their mean. The result will give us the new center of the cluster.

def fit_predict(self, X):
"""
My implementation of the KMeans algorithm.

Args:
X (ndarray): Dataset samples

Returns:
centroids (ndarray): Computed centroids
labels (ndarray): Predicts for each sample in the dataset.
"""

# Number of samples and features
m, n = X.shape

# Compute initial position of the centroids
initial_centroids = self.kmeans_plus_plus(X, self.n_clusters)

centroids = initial_centroids
labels = np.zeros(m)

prev_centroids = centroids

# Run K-Means
for i in range(self.iters):
# For each example in X, assign it to the closest centroid
labels = self.find_closest_centroids(X, centroids)

# Given the memberships, compute new centroids
centroids = self.compute_centroids(X, labels, self.n_clusters)

# Check if centroids stopped changing positions
if centroids.tolist() == prev_centroids.tolist():
print(f'K-Means converged at {i+1} iterations')
break
else:
prev_centroids = centroids

return centroids, labels

Last but not least, the ‘fit_predict()’ function will be called to make a prediction on the samples in our dataset.

Finally, your K-Means class should look something like this :

class myKMeans:
def __init__(self, n_clusters, iters):
"""
KMeans Class constructor.

Args:
n_clusters (int) : Number of clusters used for partitioning.
iters (int) : Number of iterations until the algorithm stops.

"""

self.n_clusters = n_clusters
self.iters = iters

def kmeans_plus_plus(self, X, n_clusters):
"""
My implementation of the KMeans++ initialization method for computing the centroids.

Args:
X (ndarray): Dataset samples
n_clusters (int): Number of clusters

Returns:
centroids (ndarray): Initial position of centroids
"""

# Assign the first centroid to a random sample from the dataset.
idx = random.randrange(len(X))
centroids = [X[idx]]

# For each cluster
for _ in range(1, n_clusters):

# Get the squared distance between that centroid and each sample in the dataset
squared_distances = np.array([min([np.inner(centroid - sample,centroid - sample) for centroid in centroids]) for sample in X])

# Convert the distances into probabilities that a specific sample could be the center of a new centroid
proba = squared_distances / squared_distances.sum()

for point, probability in enumerate(proba):
# The farthest point from the previous computed centroids will be assigned as the new centroid as it has the highest probability.
if probability == proba.max():
centroid = point
break

centroids.append(X[centroid])

return np.array(centroids)

def find_closest_centroids(self, X, centroids):
"""
Computes the distance to the centroids and assigns the new label to each sample in the dataset.

Args:
X (ndarray): Dataset samples
centroids (ndarray): Number of clusters

Returns:
idx (ndarray): Closest centroids for each observation

"""


# Set K as number of centroids
K = centroids.shape[0]

# Initialize the labels array to 0
label = np.zeros(X.shape[0], dtype=int)

# For each sample in the dataset
for sample in range(len(X)):
distance = []
# Take every centroid
for centroid in range(len(centroids)):
# Compute Euclidean norm between a specific sample and a centroid
norm = np.linalg.norm(X[sample] - centroids[centroid])
distance.append(norm)

# Assign the closest centroid as it's label
label[sample] = distance.index(min(distance))

return label

def compute_centroids(self, X, idx, K):
"""
Returns the new centroids by computing the mean of the data points assigned to each centroid.

Args:
X (ndarray): Dataset samples
idx (ndarray): Closest centroids for each observation
K (int): Number of clusters

Returns:
centroids (ndarray): New centroids computed
"""


# Number of samples and features
m, n = X.shape

# Initialize centroids to 0
centroids = np.zeros((K, n))

# For each centroid
for k in range(K):
# Take all samples assigned to that specific centroid
points = X[idx == k]
# Compute their mean
centroids[k] = np.mean(points, axis=0)

return centroids

def fit_predict(self, X):
"""
My implementation of the KMeans algorithm.

Args:
X (ndarray): Dataset samples

Returns:
centroids (ndarray): Computed centroids
labels (ndarray): Predicts for each sample in the dataset.
"""

# Number of samples and features
m, n = X.shape

# Compute initial position of the centroids
initial_centroids = self.kmeans_plus_plus(X, self.n_clusters)

centroids = initial_centroids
labels = np.zeros(m)

prev_centroids = centroids

# Run K-Means
for i in range(self.iters):
# For each example in X, assign it to the closest centroid
labels = self.find_closest_centroids(X, centroids)

# Given the memberships, compute new centroids
centroids = self.compute_centroids(X, labels, self.n_clusters)

# Check if centroids stopped changing positions
if centroids.tolist() == prev_centroids.tolist():
print(f'K-Means converged at {i+1} iterations')
break
else:
prev_centroids = centroids

return labels, centroids

Cool. Now let’s see how the results of our implementation look like compared to the sklearn version of K-Means 🙂 For that, we need to import the following dependencies :

import random
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

Next, we need a dataset on which we will perform the clustering. For the sake of simplicity, I will generate a dummy dataset using ‘make_blobs()’ function from sklearn.datasets.

from sklearn.datasets import make_blobs

# Generate 2D classification dataset
X, y = make_blobs(n_samples=1500, centers=6, n_features=2, random_state=67)

The code snippet from above will generate us the following dataset :

Figure 2. Randomly generated 2-dimensional labeled dataset. Illustration by the author.

Now, let’s run both versions of K-Means (own and sklearn implementations) and see how they perform.

# sklearn version of KMeans
kmeans = KMeans(n_clusters=5)
sklearn_labels = kmeans.fit_predict(X)
sklearn_centers = kmeans.cluster_centers_

# own implementation of KMeans
my_kmeans = myKMeans(5, 50)
mykmeans_labels, mykmeans_centers = my_kmeans.fit_predict(X)

Great. Now that we have the inferences let’s visualize them together with the Voronoi Cells.U+1F601

plt.figure(figsize=(12,4)) 
vor = Voronoi(sklearn_centers)
fig = voronoi_plot_2d(vor, plt.subplot(1, 2, 1))
plt.subplot(1, 2, 1)
plt.title("sklearn KMeans Predicts")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.xlim([-13, 11])
plt.ylim([-14, 13])
plt.scatter(X[:, 0], X[:, 1], 4, c=sklearn_labels)
plt.scatter(sklearn_centers[:, 0], sklearn_centers[:, 1], marker='x', c='red', s=50)
vor = Voronoi(mykmeans_centers)
fig = voronoi_plot_2d(vor, plt.subplot(1, 2, 2))
plt.subplot(1, 2, 2)
plt.title("My KMeans Predicts")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.xlim([-13, 11])
plt.ylim([-14, 13])
plt.scatter(X[:, 0], X[:, 1], 4, c=mykmeans_labels)
plt.scatter(mykmeans_centers[:, 0], mykmeans_centers[:, 1], marker='x', c='red', s=50)
plt.show()
Figure 3. Comparison between our implementation of K-Means from scratch and the sklearn version. Illustration by the author.

Wow. That looks really impressive if you ask me. The results are pretty much the same.

Conclusions

To sum up, this is more or less everything that you need to know about this powerful clustering algorithm. I hope that this article helped you get a glance at K-Means principles. Thanks for reading!

If you have any observations about the article, write them in the comments! I’d love to read them U+1F60B

About me

Hi, my name is Alex, and I’m a young and passionate student in Machine Learning and Data Science.

If you liked the content, please consider dropping a follow and claps, as they are really appreciated. Also, feel free to connect with me on LinkedIn in order to get some weekly insights on machine learning-related topics.

References

[1] David Arthur and Sergei Vassilvitskii, k-means++: The Advantages of Careful Seeding (2007), http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

[2] https://en.wikipedia.org/wiki/K-means_clustering#Applications

[3] https://www.kdnuggets.com/2020/06/centroid-initialization-k-means-clustering.html

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->