Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Correct Handling of Outliers to Improve Overfitting Scenarios
Latest   Machine Learning

Correct Handling of Outliers to Improve Overfitting Scenarios

Last Updated on June 28, 2023 by Editorial Team

Author(s): Kayenga Campos

Originally published on Towards AI.

Correct Handling of Outliers to Improve Overfitting Scenarios

Look how quantile treatment of outliers can improve model accuracy

The main approach of machine learning consists of splitting the data into training and testing sets. Machine learning algorithms are then trained on the training set (dataset) to generalize from a pattern to unseen data, i.e., a test set. When an algorithm fails to generalize what it learned from the training set to the test set, it means the algorithm is overfitting.

Credits: Tremau

Overfitting is a common problem in supervised learning, and in fact, two of the major tasks we face in classification are to identify it and overcome it. Endorsing it can compromise the quality of our model and even our reputation as data science experts.

If all the data in the test set follows the same distribution as the training set, why does overfitting occur?

The occurrence of overfitting is due to the possibility that the distribution of the training or test data may have irregularities that prevent the model from fitting to all the data. This is particularly likely in cases where learning takes place over a long period or when training examples are scarce, causing the model to adjust to specific random characteristics of the training set. These models generally violate Occam’s razor.

William of Ockham by wikimedia

The faithful translation of these words is “Entities must not be multiplied beyond necessary”, based on these words, in an overfitting scenario, this can be interpreted as:

When there are two models with similar performance, always choose the simplest one.

For a practical example of the statistical approaches described in this post, let’s use iris data.

The dataset used in this article can be downloaded directly from the UCI repository, although it is also possible to call from the Scikit-learn library.

If you already have the dataset on your machine, you can load the data with pandas:

import pandas as pd
filename = "iris.csv"
names = ["SepalLength","SepalWidth","PetalLength","PetalWidth","Species"]
df = pd.read_csv(filename,names=names)
df.head(5)
First five elements from Iris data

The Iris plant dataset became popular thanks to the statistician and biologist R.A. Fisher when he presented it in his paper titled “The use of multiple measurements in taxonomic problems” as an example of linear discriminant analysis in 1936. It is now widely used in pattern recognition literature. This dataset has five variables, namely:

  1. sepal length in cm
  2. sepal width in cm
  3. petal length in cm
  4. petal width in cm
  5. class:
    — Iris Setosa
    — Iris Versicolor
    — Iris Virginica

As stated in the UCI repository, there are actually some irregularities in the iris data:

The 35th sample should be: 4.9,3.1,1.5,0.2,”Iris-setosa” where the error is in the fourth feature. Sample 38th: 4.9,3.6,1.4,0.1,”Iris-setosa” where the errors are in the second and third features.

Can this affect the performance of our model? It can, even though the difference may seem insignificant given the considerable number of correctly collected data. However, we should always choose to correct any irregularities found in our training set.

We proceed to obtain a statistical description of our data and also call a pandas function to count the number of our output class (Species): We have 3 classes with 50 members each.

We can also check the mean, standard deviation, and quantiles of each class:

df.describe()
class_count = df.groupby('Species').size()
class_count
The Iris data has 150 elements, 50 by class.

We have 3 classes of 50 members each, we can also check the mean, standard deviation, and quantiles of each class.

We can have a visual description of our data.

import matplotlib.pyplot as plt

# Set species and colors
species = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
colors = ['blue', 'orange', 'red']


plt.figure(figsize=(8, 6))

for i, sp in enumerate(species):
subset = df[df['Species'] == sp]
plt.scatter(subset['SepalLength'], subset['SepalWidth'], color=colors[i], label=sp)

plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Scatter Plot of Iris Species')

plt.show()
(left) Distribuition points per petal U+007C (right) Distribuiton points per sepal. Image by Author

In fact, based on the size of the sepal and the petal, it is possible to establish the following rules:

If petal-length < 2.45 then Iris-setosa
If sepal-width < 2.10 then Iris-versicolor
If sepal-width < 2.45 and petal-length < 4.55 then Iris-versicolor
If sepal-width < 2.95 and petal-width < 1.35 then Iris-versicolor
If petal-length < 2.45 and petal-length < 4.45 then Iris-versicolor
If sepal-length >= 5.85 and petal-length < 4.75 then Iris-versicolor
If sepal-width < 2.55 and petal-length < 4.95 and petal-width < 1.55 then
iris versicolor
If petal-length >= 2.45 and petal-length < 4.95 and petal-width < 1.55 then
iris versicolor
If sepal-length >= 6.55 and petal-length < 5.05 then Iris-versicolor
If sepal-width < 2.75 and petal-width < 1.65 and sepal-length < 6.05
then iris-versicolor
If sepal-length >= 5.85 and sepal-length < 5.95 and petal-length < 4.85
then iris-versicolor
If petal-length >= 5.15 then Iris-virginica
If petal-width >= 1.85 then Iris-virginica
If petal-width >= 1.75 and sepal-width < 3.05 then Iris-virginica
If petal-length >= 4.95 and petal-width < 1.55 then Iris-virginica

If petal-length >= 5.15 then Iris-virginica
If petal-width >= 1.85 then Iris-virginica
If petal-width >= 1.75 and sepal-width < 3.05 then Iris-virginica
If petal-length >= 4.95 and petal-width < 1.55 then Iris-virginica

The next step is to standardize our data, some algorithms perform better when exposed to a normal distribution, we can try to achieve this through the Z-Score transformation.

Where x is the number of elements in the dataset.

Take care using this formula. When the data is multidimensional, you must modify this formula to:

But before going to the next step, let’s review some concepts about Gaussian distribution and the z-score itself.

In a Gaussian distribution also called normal distribution, about 68.3% of the records are between:

About 95.4% of the records are between:

About 99.7% of the records are between:

In summary:

Gaussian Distribuition by wikimedia

In fact, according to the central limit theorem, it is only possible to reach a standard normal distribution with the Z-Score transformation when the number of samples is large enough; when the number of samples is not large enough, we will encounter a T-Student distribution. The T-Student distribution is similar to a normal distribution, with a flatter bell shape depending on the degrees of freedom; in general, the greater the degrees of freedom, the closer it is to a normal distribution.

T-Student Vs Normal Distribuition by T.J. Kyner

It is often said that after the Z-Score transformation we have a mean of 0 and a standard deviation of 1, but in fact the Z-Score itself is a random variable, the value of the variance is not known for sure, just an estimate that is approximations to these values.

An Overfitting Arises

We will evaluate a common overfitting scenario; we will train a logistic regression model to classify our Iris data. To simulate an overfitting scenario, we will divide the data into training (90%) and test sets (10) without randomizing the data; as the data is ordered, this will allow us to capture all records of the iris setosa and iris versicolor classes and only 70% of the iris virginica classe, as the algorithm trained on only a few data from this class it will not perform well when evaluating data not seen in this class, In other words, it is possible to deduce that we have to overfit. Our goal is to create an approach to improve the model’s performance up to 100% without randomizing the data or exposing the model to more training data. Is this possible? We will see next.

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

array = df.values
X = array[:,0:4] # data
Y = array[:,4] # label

# Standardize the data
X = (X - np.mean(X))/2*np.std(X)

# Reserve 10% to test.
split = int(X.shape[0]*0.9)

X_train = X[0:split]
Y_train = Y[0:split]

X_test = X[split:]
Y_test = Y[split:]

model = LogisticRegression(max_iter=1000)
model.fit(X_train, Y_train)
result = model.score(X_test, Y_test)

Our model is accurate to 93%. This looks fantastic, but there is actually a problem to solve, our model was not able to correctly classify the records of the virginica class as expected, and as we set out to solve it, we must look for a way to improve the performance of our model for that class.

The approach to solve this problem is in the statistical treatment for outliers. Outliers are values ​​outside the distribution of our data, the type of graph that best describes them is boxplots, here is a small description of how to interpret them.

df.plot(kind='box')
(left) Boxplot of the iris dataset U+007C (right) Boxplot description. Image by Author

As it is in the image, these dots outside the whiskers are our outliers. We observe that SepalWidth have outliers, fortunately, we have a way to locate them, so let’s analyze our problem more statistically:
Being X a variable of the setosa, virginica or versicolor class, X is an outlier if:

Or alternatively:

Now we know how to hunt for an outlier, we just need to translate this into our favorite programming language. Ah! We need to replace the outlier points with standard deviation.

def outlier_search(column):
quantile1 = df[column].quantile(0.25)
quantile3 = df[column].quantile(0.75)
inter_quantile = quantile3 - quantile1
out_found = df.loc[(df[column] < (quantile1 - (1.5*inter_quantile))) U+007C (df[column] > (quantile3 + (1.5*inter_quantile))), column] = df[column].std()
return column

outlier_search('SepalWidth')

Let’s visualize the boxplots again.

Boxplot with reduced outliers. Image by Author

We seem to have achieved a very significant improvement in our data.
Unfortunately, there is no clear pattern for handling outliers, so we need to make some adjustments to the formula to improve the model’s score. Let’s modify the quantile3 variable by dividing it by 2. Our final formula should look like this:

Now that we’ve gathered all the variables, all that’s left is to put it all together and see what result we can get from it:

...
...

def outlier_search(column):
quantile1 = df[column].quantile(0.25)
quantile3_optimized = (df[column].quantile(0.75))/2
inter_quantile = df[column].quantile(0.75) - df[column].quantile(0.25)
out_found = df.loc[(df[column] < (quantile1 - (1.5*inter_quantile))) U+007C (df[column] > (quantile3_optimized + (1.5*inter_quantile))), column] = df[column].std()
return column

outlier_search('SepalWidth')

array = df.values
X = array[:,0:4] # data
Y = array[:,4] # test

# Standardize the data
X = (X - np.mean(X))/2*np.std(X)

# Reserve 10% to test
split = int(X.shape[0]*0.9)

X_train = X[0:split]
Y_train = Y[0:split]

X_test = X[split:]
Y_test = Y[split:]

model = LogisticRegression(max_iter=1000)
model.fit(X_train, Y_train)
result = model.score(X_test, Y_test)

Wow! Our model score is now 100%! We achieve our goal simply by offering an approach to dealing with outliers.

Conclusion
In this article, we try to discuss the problem of overfitting and how it affects our model, we found that deleting the outliers could significantly improve our model, and in the end, we present a statistical way of how to locate the outliers in our data.

We also made a comparison of accuracy with and without outliers, this is just one approach to deal with the overfitting problem that caters to a scenario where the training data is unbalanced.

Disclaimer: The main purpose of this article is to prove that handling outliers can really significantly improve the train data score, so the overfitting scenario was created intentionally; you should use some approach to avoid overfitting, like cross-validation.

I hope this post has clarified what it is, and how to deal with this problem.

Thanks for reading the post!

Follow me for more content like this one, it helps a lot!

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->