Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

LoRA Learns Less and Forgets Less
Data Science   Latest   Machine Learning

LoRA Learns Less and Forgets Less

Last Updated on June 10, 2024 by Editorial Team

Author(s): Hesam Sheikh

Originally published on Towards AI.

We will go through LoRA (Low-Rank Adaptation of Large Language Models), what it is, and the interesting properties of LoRA when compared to Full Fine-Tuning
LoRA from the original paper.

LoRA is one of the ABCs of working with LLMs. To intuitively know what LoRA does, why it is important in fine-tuning, and, most importantly, when not to use LoRA is an essential topic to know by heart before tweaking the weights of your model.

In this article, we will walk through how traditional fine-tuning works and its shortcomings, what LoRA is, and some interesting properties of it.

✨This is a paid article. If you’re not a Medium member, you can read this for free in my newsletter: Qiubyte.

As the size of Large Language Models (LLM) increases to hundreds of billions, fine-tuning these beasts becomes a challenge. Traditionally, to fine-tune a model, we would need to update all of the model parameters. This is also known as Full Fine-Tuning (FFT). A close overview of how this method works can be seen in the diagram below.

An overview of how Full Fine-Tuning works. Note that this is for comprehensive purposes and in reality, FFT updates W in-place and replaces it with W’ (by Author).

There are a few trivial problems with this approach. First, the computational cost and resource requirements for FFT are substantial, as updating every parameter requires significant processing… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓