Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

Why RAG Applications Fail in Production
Artificial Intelligence   Data Science   Latest   Machine Learning

Why RAG Applications Fail in Production

Last Updated on March 25, 2024 by Editorial Team

Author(s): Dr. Mandar Karhade, MD. PhD.

Originally published on Towards AI.

It worked as a prototype; then all went down!

Retrieval-Augmented Generation (RAG) applications have emerged as powerful tools in the landscape of Large Language Models (LLMs), enhancing their capabilities by integrating external knowledge. Despite their promise, RAG applications often face challenges when transitioning from prototype to production environments. This article delves into the intricacies of RAG applications, exploring common pitfalls and strategic insights for successful deployment.

Deploying RAG applications in a production setting is fraught with challenges. The complexity of integrating generative LLMs with retrieval mechanisms means that any number of elements can malfunction, leading to potential system failures. For instance, the scalability and robustness of the system are crucial; it must handle unpredictable loads and remain operational under high demand. Moreover, predicting user interactions with the system in a live environment is challenging, necessitating continuous monitoring and adaptation to maintain performance and reliability​.

Source: https://medium.com/@vipra_singh/building-llm-applications-retrieval-search-part-5-c83a7004037d

Based on Retrieval Method: RAG models can be categorized by the retrieval method they use, such as using BM25 (a traditional information retrieval function) or more advanced dense retrievers that leverage neural network-based embeddings to find relevant documents. The choice of retriever impacts how well the model can fetch pertinent information from a corpus​

Based on Generation Mechanism: The generative component of RAG usually employs transformer-based models… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓