Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

OpenAI Threw Resources at Book Summarization Task (Paper Review/Explained)
Latest   Machine Learning

OpenAI Threw Resources at Book Summarization Task (Paper Review/Explained)

Last Updated on July 26, 2023 by Editorial Team

Author(s): Ala Alam Falaki

Originally published on Towards AI.

This member-only story is on us. Upgrade to access all of Medium.

Explain the β€œRecursively Summarizing Books with Human Feedback” paper and its effectiveness.

Photo by MikoΕ‚aj on Unsplash

You might be familiar with OpenAI’s GPT family models and their third-generation (GPT-3) with 174 billion parameters pre-trained network. They are known to publish large pre-trained models compared to other studies (at the time). Their latest paper focused on fine-tuning their latest model for text summarization. Let’s see how it works, and more importantly, does it work?

Figure 1. Taken from [1]

This paper [1] heavily cites one of OpenAI’s previous studies called β€œLearning to summarize… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓