Cross-lingual Language Model
Last Updated on July 25, 2023 by Editorial Team
Author(s): Edward Ma
Originally published on Towards AI.
Discussing XLMs and unsupervised cross-lingual word embedding by multilingual neural language models
Photo by Edward Ma on Unsplash
A pre-trained model is proven to improve the downstream problem. Lample and Conneau propose two new training objectives to train cross-lingual language models (XLM). This approach leads to achieving state-of-the-art results on Cross-lingual Natural Language Inference (XNLI). On the other hand, Wada and Iwata proposed another way to learn cross-lingual text representation without parallel data. They named it Multilingual Neural Language Models.
This story will discuss Pretraining (Lample and Conneau, 2019) and Unsupervised Cross-lingual Word Embedding by Multilingual Neural Language Models (Wada and Iwata, 2018)
The following are will be covered:
Data ArchitectureMultilingual Neural Language Models ArchitectureExperiment
Lample… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.
Published via Towards AI
Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!
Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

Discover Your Dream AI Career at Towards AI Jobs
Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!
Note: Content contains the views of the contributing authors and not Towards AI.