
EMI: Exploration with Mutual Information
Last Updated on July 20, 2023 by Editorial Team
Author(s): Sherwin Chen
Originally published on Towards AI.
A novel exploration method based on representation learning
Source: Photo by Andrew Neel on Unsplash
Reinforcement learning could be hard when the reward signal is sparse. In these scenarios, exploration strategy becomes essentially important: a good exploration strategy not only helps the agent to gain a faster and better understanding of the world but also makes it robust to the change of the environment. In this article, we discuss a novel exploration method, namely Exploration with Mutual Information(EMI) proposed by Kim et al. in ICML 2019. In a nutshell, EMI learns representations for both observations(states) and actions in the expectation that we can have a linear dynamics model on… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.
Published via Towards AI
Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!
Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

Discover Your Dream AI Career at Towards AI Jobs
Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!
Note: Content contains the views of the contributing authors and not Towards AI.