A Quantitative and Qualitative Approach To Data Cleaning
Last Updated on July 26, 2023 by Editorial Team
Author(s): Kaushik Choudhury
Originally published on Towards AI.
Clean data is the oxygen that enables the trained machine learning models to deliver Olympic-level performance.
This member-only story is on us. Upgrade to access all of Medium.
Photo by Lina Verovaya on Unsplash
When we started learning COBOL in high school, one of the first things the teacher introduced was the concept of GIGO. GIGO stands for “garbage in, garbage out”. If we input clutter mishmash data to a program, it will either error out or provide inaccurate results. This fundamental principle has not changed in machine learning programming. Moreover, it has become more relevant over time, considering the massive amount of data required to train a model for real-life artificial intelligence use cases.
Raw data is gathered… Read the full blog for free on Medium.
Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.
Published via Towards AI
Take our 90+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!
Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

Discover Your Dream AI Career at Towards AI Jobs
Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 40,000 live jobs today with Towards AI Jobs!
Note: Content contains the views of the contributing authors and not Towards AI.