Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: [email protected]
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

RLHF Training Pipeline for LLMs Using Huggingface πŸ€—
Artificial Intelligence   Data Science   Latest   Machine Learning

RLHF Training Pipeline for LLMs Using Huggingface πŸ€—

Last Updated on December 11, 2023 by Editorial Team

Author(s): Marcello Politi

Originally published on Towards AI.

Learn how to develop your own domain-specific LLM with this Python hands-on guide
Photo by Jongsun Lee on Unsplash

This blog post was written by Marcello Politi and Vijayasri Iyer.

By now, everyone is talking about generative AI and Large Language Models. Models such as ChatGPT and Grok have become household names today, and there are many people who want to adopt solutions based on these technologies to improve their businesses.

It must be said, however, that although the language capabilities of these models are impressive, they are still far from perfect; indeed, there are many major problems that we still cannot solve.

LLMs, like all Machine/Deep learning models, learn from data. Therefore, there is no escaping the garbage in garbage out rule. That is, if we train the models on low-quality data, the quality of the output at the inference time will be equally low.

This represents the main reason why, during conversations with LLMs, responses with biases (or prejudices) occur.

However, there are techniques that allow us to have more control over the output of these models to ensure the LLM alignment so that the model’s responses are not only accurate and coherent but also safe, ethical, and desirable from the perspective of developers and users. The most commonly used technique nowadays its by using reinforcement learning

Image… Read the full blog for free on Medium.

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming aΒ sponsor.

Published via Towards AI

Feedback ↓